Numerical and experimental approach towards an energy-efficient compact spinning system

Author:

Saty Malik YH12,Akankwasa Nicholus Tayari3ORCID,Wang Jun13ORCID

Affiliation:

1. College of Textiles, Donghua University, Shanghai, China

2. College of Engineering Technology of Industries, Sudan University of Science and Technology, Khartoum, Sudan

3. Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, China

Abstract

Compact spinning with a lattice apron has recently become a very attractive approach for pneumatic compact yarn production spinning systems. One of the main challenges with use of this method is the high negative pressure that leads to high energy consumption. In response to this challenge, we present a numerical and experimental investigation of the effects of a three-dimensional (3D) printed guiding device on the airflow characteristics and yarn properties. Initially, the 3D numerical model of the compact spinning system was set up based on the real geometrical dimensions. Secondly, the 3D prototype was developed, simulated, and analyzed using Solidworks and Ansys. Ultimately, the design, which exhibited low negative pressure along the model domain, was adopted and then 3D printed to enable further experimental investigation. Airflow analysis results illustrated that when using the guiding device with low negative pressure, the active area of negative pressure was increased. This was due to the existence and the special design of the guiding device that prevented the decrease of the negative pressure with atmospheric pressure. This increased the transverse condensing force, which was beneficial for twisting the free-end fiber around the fiber bundle. Experimental results revealed that the three yarns spun with the guiding device achieved significant energy saving when the guiding device was used. Moreover, these yarns spun with the guiding device had better strength, hairiness, and evenness than those spun without a guiding device. The model developed can be further improved and utilized for commercial purposes, as it significantly reduces energy costs while improving yarn properties.

Funder

This work was supported by the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3