Effect of yarn characteristics on surface properties of knitted fabrics

Author:

Balci Kilic Gonca1ORCID,Okur Ayşe1

Affiliation:

1. Department of Textile Engineering, Dokuz Eylül University, Turkey

Abstract

Fabric surface properties are significant in terms of fabric handle, sensorial comfort, aesthetic and performance properties. Yarn properties are among the most important parameters that affect fabric surface properties. Besides, fiber type, fiber properties and spinning technology etc. directly affect the physical, mechanical and performance properties of yarns as well as fabric surface properties. In the scope of this study, effects of fiber type (raw material), fiber fineness and fiber length on the surface properties of fabrics were investigated. Also, properties of yarns were measured and their effects on fabric surface properties were analyzed. For this purpose, unevenness, optical unevenness, imperfections, structural properties (diameter, density, roughness and shape), hairiness and frictional properties of yarns were measured, and relationships between abrasion resistance, pilling and frictional properties of knitted fabrics were examined. Regression models were developed in order to predict fabric surface properties from yarn characteristics. Based on comprehensive data analysis, it was concluded that variation in yarn friction and yarn hairiness explains approximately 80–85% of fabric-to-fabric and fabric-to-skin (gazelle skin) friction coefficients. Furthermore, positive correlations between yarn hairiness and weight loss, and yarn hairiness and thickness change after abrasion test, were observed. Additionally, a new parameter, the optical contact index (OCI), based on an image analysis method, was suggested to determine the surface properties and roughness of fabrics. Relationships between the OCI and other tested fabric surface properties were statistically analyzed. Statistical analyses showed that high correlations exist between the new parameter and fabric friction and abrasion resistance at the 0.05 significance level.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3