Effect of the molecular weight and its distribution of polyvinylidene fluoride on the relationship between the spinning process, microstructure and properties of hollow fiber membranes via thermally induced phase separation

Author:

Li Nana12,Chang Zhe2,Lu Qingchen2,Xiao Changfa1,Wu Junyi3,Liang Congqiang3

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Research on Membrane Science and Technology, Tianjin Polytechnic University, China

2. Textile Institute, Tianjin Polytechnic University, China

3. Inner Mongolia 3F Wanhao Fluorine Chemical Co., Ltd, China

Abstract

Polyvinylidene fluoride (PVDF) is an important material in the preparation of ultrafiltration membranes via the thermally induced phase separation (TIPS) method. In this paper, four PVDF hollow fiber membranes with different molecular weights were prepared via the TIPS method by using dibutyl phthalate and dioctyl phthalate as a mixed diluent. The relationship between the molecular weight of PVDF and its distribution, phase separation, crystallization behavior and spinning process has been systematically studied. The effects of three factors on the microstructure and properties of the PVDF membrane have been analyzed. The flow behaviors of the PVDF/diluent and PVDF melt were tested by a capillary rheometer and a melt flow rate instrument, respectively. A phase diagram of the membrane solution was determined by thermal polarizing microscope and differential scanning calorimetry. The crystallization behavior and angle of orientation of the membrane were tested by using a differential scanning calorimeter and a sound velocity orientation measurement instrument. The microstructures, such as the pore structure and crystalline grain structure, were observed by field emission scanning electron microscopy. Meanwhile, the properties of the membrane were examined from the view of water flux, porosity and tensile testing. The results showed that changes in the polymer molecular weights affected not only the dynamics but also the thermodynamics of phase separation in membrane formation. As the PVDF molecular weight increased, the phase separation region increased, but the membrane structure became denser. A wide molecular weight distribution easily produced large pores. Then, the water flux decreased first and then increased.

Funder

National Natural Science Foundation of China

Program Scholars and for Chang-jiang Innovative Research Team in University of Ministry of Education of China

Science and Technology Plans of Tianjin

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3