Experimental study of a modified drafting system based on the ring spinning frame

Author:

Cui Yuemin1ORCID,Song Hong1,Cheng Longdi1,Deng Wansheng1,Ji Yijun1

Affiliation:

1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, People’s Republic of China

Abstract

A systematic study of a modified drafting system based on the ring spinning frame, which is called the SDS (soft drafting system), is reported in this article to raise yarn quality. Two parts of an experiment were conducted to investigate differences between the conventional and modified drafting systems by spinning three kinds of yarns (in part I) and the effects of process parameters (block gauge, pressure on the front rollers and break draft) on the SDS by using response surface methodology (RSM) to spin 18.2 tex cotton yarn (in part II). The results show that the SDS can significantly improve yarn evenness and reduce yarn imperfections of thick places by +35% and +50%, respectively, and neps by +140% per km. In addition, it is noted that the three parameters are all statistically significant for the SDS to spin yarns, while interactions between them are not. More importantly, RSM predicted a minimum CVm% of 13.95% under the optimum conditions of 1.75 mm, 190 N and 1.21 for the block gauge, pressure on the front rollers and break draft, respectively, which is very close to the conditions of the practical spinning test.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3