Affiliation:
1. Department of Clothing and Textiles, Yonsei University, Seoul, South Korea
2. Department of Clothing and Textiles, Inha University, Inchon, South Korea
3. Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, U.S.A.
Abstract
In order to provide a fabric sound evaluation system for designing auditory-sensible fabrics, sound parameters are obtained, including the level pressure of total sound (LPT), sound color factors (Δ L and Δ f), three coefficients (ARC, ARF, ARE) of autoregressive models based on the fast fourier transform spectrum, loudness(Z) and sharpness(Z) from Zwicker's psychoacoustic models, and mechanical properties from KES values for wool suiting fabrics. As psychophysical characteristics, subjective sensations of softness, loud ness, sharpness, clearness, roughness, highness, and pleasantness of the fabric sounds are evaluated by the free modulus magnitude estimation. Tropical wool has the lowest loudness(Z) and the highest Δ L value among the fabrics. Melton, a thicker and heavier woolen, shows a trend similar to saxony and flannel for sound parameters. Wool suiting fabrics have higher scores for loudness and highness rather than clearness and pleasant ness, except for tropical wool, which has the highest scores for pleasantness among the fabrics. Using the modified stepwise regression of Kawabata, all sensations are predicted by both sound parameters and mechanical properties. The sound sensation of wool suiting fabrics is related mainly to tensile, surface, and shear properties in mechanical measure ments and with autoregressive coefficients as sound parameters.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献