Polytetrafluoroethylene fiber fabrication from the continuous melt-spinning process and its properties

Author:

Lim Taehwan1ORCID,Kim Dokun1,Lee Uie Hyeon1,Nam In-Woo1,Kwak Young-Je2,Yeang Byeong Jin1

Affiliation:

1. Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), South Korea

2. Department of Organic Materials and Fiber Engineering, Soongsil University, South Korea

Abstract

Polytetrafluoroethylene (PTFE) has high thermal stability and chemical resistance, and hence is gaining great attention in the industrial field of high-performance filters, membranes, and medical applications. However, since PTFE possesses a narrow gap between melting (330°C) and decomposition temperatures (350°C), the melt-spinning process that is required to satisfy industrial needs for mass production has been limited. Here, perfluoro(propyl vinyl ether) (PPVE) was introduced to decrease the melting point of PTFE then fiber fabrication was performed with the melt-spinning process using a single-screw extruder, enabling the PTFE fiber to fabricate continuously. We selected an optimal melt-spinning condition and obtained PTFE fiber from the melt-processable PTFE/PPVE copolymer. The as-spun PTFE fiber showed low mechanical strength (0.90 g/denier or 89.1 MPa of tenacity). A post-thermal drawing process was performed to increase the mechanical strength of the PTFE as-spun. It demonstrated that the thermally drawn PTFE fiber showed higher mechanical strength (1.84 g/denier or 220.0 MPa of tenacity) due to the increased degree of crystallinity. Also, the other trial, thermal stabilization under N2, suggested as a future modification method to increase mechanical strength further, preventing thermal constriction of the PTFE fiber. The melt-spun and thermally drawn PTFE fibers were knitted and it was confirmed that the fiber has high chemical resistance and similar surface chemistry to conventional PTFE fibers. This study developed a method to enable a melt-processable PTFE fiber fabrication and opens up opportunities for mass production that is crucial in the industrial aspect.

Funder

Ministry of Trade, Industry and Energy

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3