Unsupervised fabric defect detection based on a deep convolutional generative adversarial network

Author:

Hu Guanghua1,Huang Junfeng1,Wang Qinghui1,Li Jingrong1,Xu Zhijia1,Huang Xingbiao12

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, China

2. Guangxing Poultry Equipment Group Co., Ltd, China

Abstract

Detecting and locating surface defects in textured materials is a crucial but challenging problem due to factors such as texture variations and lack of adequate defective samples prior to testing. In this paper we present a novel unsupervised method for automatically detecting defects in fabrics based on a deep convolutional generative adversarial network (DCGAN). The proposed method extends the standard DCGAN, which consists of a discriminator and a generator, by introducing a new encoder component. With the assistance of this encoder, our model can reconstruct a given query image such that no defects but only normal textures will be preserved in the reconstruction. Therefore, when subtracting the reconstruction from the original image, a residual map can be created to highlight potential defective regions. Besides, our model generates a likelihood map for the image under inspection where each pixel value indicates the probability of occurrence of defects at that location. The residual map and the likelihood map are then synthesized together to form an enhanced fusion map. Typically, the fusion map exhibits uniform gray levels over defect-free regions but distinct deviations over defective areas, which can be further thresholded to produce a binarized segmentation result. Our model can be unsupervisedly trained by feeding with a set of small-sized image patches picked from a few defect-free examples. The training is divided into several successively performed stages, each under an individual training strategy. The performance of the proposed method has been extensively evaluated by a variety of real fabric samples. The experimental results in comparison with other methods demonstrate its effectiveness in fabric defect detection.

Funder

Science and Technology Program of Guangzhou, China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3