An investigation on the distribution of massive fiber granules in rotor spinning units

Author:

Jin Yuzhen1,Cui Jingyu1,Li Xiangdong1,Chen Hongli1

Affiliation:

1. Zhejiang Provincial Key Lab of Modern Textile Machinery & Technology, Zhejiang Sci-Tech University, China

Abstract

Rotor spinning is an open-end spinning method that uses air as the medium to transform the fibers into yarn. Nowadays, the properties of its final product—yarn—such as yarn strength and yarn twist, are not satisfied due to the fiber morphology, which greatly depends on the distribution of the massive fibers in the rotor spinning unit (RSU). In this paper, theoretical analysis is given to describe the trajectory of fiber on the slide wall. A numerical study is performed with the massive fibers being simplified into granules to study their distribution characteristics in the RSU. According to our numerical results, the forming process of the fibrous ring is discussed and the effects of two variables, the rotor speed and the angle of the slide wall, on the distribution of fiber granules were also studied. The simulation results indicate that the fiber granules are not evenly distributed during their transport in the fiber transport channel (FTC) and they tend to accumulate on the upper and lower edge of the FTC. The distribution of fiber granules in the groove (fibrous rings) is closely related to the rotor speed. The higher the rotor speed, the longer and thinner the fibrous ring. The distribution of fiber granules on the slide wall is related to the angle of the slide wall such that a smaller angle leads to a scattered distribution on the slide wall, while a larger angle tends to bring a concentrated one. The simulation results show good agreements with our experimental results.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3