Affiliation:
1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China
2. Faculty of Textile, Department of Textile Engineering and Technology, University of Gezira, Wad-Medani, P.O. Box 20, Sudan
3. Textile Materials and Technology Lab (TMT), Donghua University, China
4. Chongqing Fiber Inspection Bureau, Beibu New District, Chongqing, China
Abstract
This research contributes to the study of prickle sensation in terms of single fiber bending modulus and flexural rigidity, which are important factors for fabric-evoked prickle for garment tactile comfort. In this study, a novel technique was used to study the flexural buckling behavior of single fibers using an axial fiber-compression-bending analyzer (FICBA). The bending behavior and bending equivalent modulus of different single fibers were measured and analyzed. The bending properties of single fibers were quantified by calculating the equivalent bending modulus, and the flexural rigidity via measurement of the protruding length ( l), diameter ( d) of single fiber, and its critical force ( Pcr), obtained from the peak point of the force–displacement curve. The experimental results indicate that ramie single fiber has the highest bending modulus, while cotton has the lowest bending modulus. However, hemp, jute, wool, flax, and cashmere fiber have bending modulus values lower than ramie but higher than cotton. On the other hand, the flexural rigidity of jute fiber is higher than that of wool followed by ramie, hemp, flax, cashmere, and cotton consecutively. Therefore, jute, wool, and ramie are stiffer than the other fibers, especially jute fiber. Thus, jute, wool, and ramie are uncomfortable single fibers because the fabric-evoked prickle, which is caused by short, coarse, and stiff fibers protruding from the fabric surface, generate sufficient force to evoke a low level of activity on a human nociceptors, but insufficient to penetrate the human skin so as to cause itchiness.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献