Characterization of prickle tactile discomfort properties of different textile single fibers using an axial fiber-compression-bending analyzer (FICBA)

Author:

Asad Rabie AM12,Yu Weidong13,Zheng Yong-hong4,He Yong4

Affiliation:

1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China

2. Faculty of Textile, Department of Textile Engineering and Technology, University of Gezira, Wad-Medani, P.O. Box 20, Sudan

3. Textile Materials and Technology Lab (TMT), Donghua University, China

4. Chongqing Fiber Inspection Bureau, Beibu New District, Chongqing, China

Abstract

This research contributes to the study of prickle sensation in terms of single fiber bending modulus and flexural rigidity, which are important factors for fabric-evoked prickle for garment tactile comfort. In this study, a novel technique was used to study the flexural buckling behavior of single fibers using an axial fiber-compression-bending analyzer (FICBA). The bending behavior and bending equivalent modulus of different single fibers were measured and analyzed. The bending properties of single fibers were quantified by calculating the equivalent bending modulus, and the flexural rigidity via measurement of the protruding length ( l), diameter ( d) of single fiber, and its critical force ( Pcr), obtained from the peak point of the force–displacement curve. The experimental results indicate that ramie single fiber has the highest bending modulus, while cotton has the lowest bending modulus. However, hemp, jute, wool, flax, and cashmere fiber have bending modulus values lower than ramie but higher than cotton. On the other hand, the flexural rigidity of jute fiber is higher than that of wool followed by ramie, hemp, flax, cashmere, and cotton consecutively. Therefore, jute, wool, and ramie are stiffer than the other fibers, especially jute fiber. Thus, jute, wool, and ramie are uncomfortable single fibers because the fabric-evoked prickle, which is caused by short, coarse, and stiff fibers protruding from the fabric surface, generate sufficient force to evoke a low level of activity on a human nociceptors, but insufficient to penetrate the human skin so as to cause itchiness.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3