A novel approach to improving the quality of chitosan blended yarns using static theory

Author:

Liu Shirui1,Hua Tao1,Luo Xue1,Yi Lam Ngan1,Tao Xiao-ming1,Li Li1

Affiliation:

1. The Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong

Abstract

Chitosan is a desirable material for several reasons, including its biocompatibility, biodegradability, non-toxicity, and excellent absorption. Rapid progress in material science has resulted in the development and widespread use of chitosan in the textile industry primarily because it is polycationic and can inhibit microorganism activity. However, high electrostatic, poor mechanical properties, and the polycationic property of chitosan materials, which are the main reason for the electro-static generation of chitosan fibers, have a negative impact on the spinning process and lower the quality of chitosan yarns. Therefore, there is a critical need to reduce production losses and improve the poor spinnability. A new spinning approach exploits triboelectric electrostatic theory to efficiently remove the electric charge and to promote yarn formation under optimum conditions precisely and controllably, thereby minimizing waste and achieving a high utilization ratio of the chitosan fibers. Lagrange interpolation is used to systematically analyze the basic mechanical properties of the developed materials. The results show that the tenacity of chitosan/PAN blended yarns is superior to that of chitosan/cotton blended yarns because of the complementary effect of positive and negative charges; and the novel application of static theory can be used to effectively resolve the high static and reduce material cost problems in the yarn production process. This new approach is expected to promote the usage of chitosan fibers in the textile industry and in medical applications.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3