Study of superhydrophobicity according to surface structure of knitted fabrics

Author:

Lee Suhyun1ORCID

Affiliation:

1. College of Human Ecology, Jeonbuk National University, Jeollabuk-do, Republic of Korea

Abstract

This study seeks to analyze the effect of geometric structures of weft-knitted fabrics on superhydrophobicity and the dynamic behavior of water droplets. A flat knitting machine with different stitch patterns was used to prepare 100% polyester knitted fabrics. For the superhydrophobic surface, nano-roughness through alkaline treatment and a hydrophobic coating were introduced on prepared knitted fabrics. To analyze micro-roughness, pore size, cover factor, surface roughness, and air permeability were measured. Surface wettability was evaluated by contact and shedding angle measurements, and the dynamic behavior of droplets. Micro-roughness was greater in the order of tuck, purl, and plain jersey stitch patterns with a small cover factor and large pore size. In addition, tuck and purl stitches showed differences in surface roughness according to the wale and course directions. Nano-roughness was discernible as the alkaline treatment time increased. Following an evaluation of the wettability, the purl stitches exhibited a contact angle of 150° or more with only the hydrophobic coating. After imparting nano-roughness by alkaline treatment, the contact angle was more than 150° in all the samples. In the case of shedding angle, the tuck and purl stitches showed differences according to the course and wale directions. The shedding angle was lower when the roughness was high and the ridge and the droplet sliding directions were parallel. This difference decreased as the nano-roughness increased according to the alkaline treatment time. An evaluation of the dynamic behavior of water droplets on the superhydrophobic knitted fabric showed that rebound behavior appeared in all the samples on the horizontal surface, when the water droplet was small. However, with large droplets, the rebound behavior appeared only in purl stitches. Meanwhile, on the surface inclined at 15°, rebound behavior was observed in the tuck and purl stitches, with the tuck stitches rebounding faster in the wale direction and the purl stitches in the course direction regardless of the droplet volume. The plain jersey stitches showed pinning behavior after water droplets fell on the surface. Therefore, it is important not only to introduce nano-roughness but also properly to form geometrical micro-roughness of knitted fabric with pores and loops to induce rebound behavior of water droplets.

Funder

National Research Foundation of Korea

Jeonbuk National University

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3