Effect of crossing warp architecture on tear strength of 3D orthogonal woven T-shaped reinforcements

Author:

Wei Ziyue1ORCID,Chen Xiaogang1ORCID

Affiliation:

1. Department of Materials, University of Manchester, UK

Abstract

T-shaped textile composites reinforced by two-dimensional laminates and simple forms of three-dimensional reinforcements are susceptible to tear failure and delamination at the junction. To address these issues and enhance the tear resistance of composite T-joints, 10 types of crossing warp architecture based on three-dimensional woven orthogonal structures were designed, manufactured and characterized with the aim of optimizing the reinforcement architecture. The assessment of the in-plane mechanical behavior was carried out by a tensile tear load applied to the two flanges of the T-shaped reinforcements. The employment of crossing warp architecture effectively enhanced stiffness, tensile strength, and failure strain. Resistance to the failure of the reinforcement was increased as more crossing warp yarns were employed. To further optimize the crossing warp architecture for reinforcement development, the internal and external crossing arrangements were compared. The new finding was regardless of the crossing warp proportions, the external crossing warp led to a higher resistance to the tear force for the reinforcement than the internal crossing warp. The stiffness and tensile strength of the external crossing warp reinforcements exhibited notable improvement, with a maximum increase of 49.1% and 31.1% respectively, compared with that of the internal warp crossing counterparts. The findings in this research will be useful in manufacturing composite T-joints to tailor the reinforcement architecture with different crossing proportions and arrangements for meeting the required mechanical properties.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3