Efficient fabric anomaly detection: A transfer learning framework with expedited training times

Author:

Simon Thomine12ORCID,Hichem Snoussi1

Affiliation:

1. LIST3N, University of Technology of Troyes, Troyes, France

2. Aquilae, Troyes, France

Abstract

In industrial quality control, anomaly detection plays a critical role in identifying defective products. However, because of the rarity and time-consuming nature of defect collection, training models often rely solely on defect-free samples. This necessitates the use of unsupervised anomaly-detection techniques trained exclusively on defect-free data. Alternatively, defect data can be synthesized to augment the dataset with defective samples. In the textile industry, expeditious model training is crucial to ensure a smooth production flow. Unfortunately, most unsupervised methods require extensive training time. This paper proposes a novel transfer learning approach designed to achieve training times in seconds while effectively adapting the model to the target domain of fabric anomaly detection. The key contributions of our method include significantly reduced training times, up to 10 times faster than current state-of-the-art methods, and comparable performance in anomaly detection, achieving results on par with state-of-the-art approaches on benchmark datasets (MVTEC Anomaly Detection, TILDA, AITEX and DAGM). Additionally, our approach improves inference times, ensuring expedited and efficient anomaly detection during production. The proposed method offers a practical and efficient solution for real-time industrial quality control.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3