Hydrophobic performance of electrospun fibers functionalized with TiO2 nanoparticles

Author:

Pais Vânia12ORCID,Navarro Miguel12,Guise Catarina3,Martins Rui3,Fangueiro Raul124

Affiliation:

1. Fibrenamics, University of Minho, Portugal

2. Centre for Textile Science and Technology (2C2T), University of Minho, Portugal

3. Inovafil Fiação S.A, Portugal

4. Department of Mechanical Engineering, University of Minho, Portugal

Abstract

The development of materials with hydrophobic properties has been widely explored in areas such as textiles, healthcare, sports, and personal protective equipment. Hydrophobic properties that arise from nanoparticles (nPs) directly promote other valuable properties, including self-cleaning capabilities, decreased bacterial growth, and increased comfort. In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers were functionalized by the incorporation of titanium dioxide (TiO2) nPs to develop water-repellent materials. The membranes were produced through electrospinning, and variables such as the polymer concentration, nP concentration, and needle diameter were optimized to achieve PCL/TiO2 composite fibers with water-repellent capabilities. The nanofibers were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and the water contact angle (WCA). In general, it was observed that the nanofibers presented higher roughness values when TiO2 nPs were present and that this result promoted higher WCA values. The highest WCA value (156°) was obtained for the nanofiber mat produced with 20% weight-to-volume (w/v) PCL and 0.6% (w/v) TiO2.

Funder

European Regional Development Fund

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3