Theoretical analysis of braiding strand trajectories and simulation of three-dimensional parametric geometrical models for multilayer interlock three-dimensional tubular braided preforms

Author:

Wang Zhipeng1ORCID,Zhang Guoli1,Zhu Youxin2,Zhang Liqing1,Shi Xiaoping1,Wang Weiwei1

Affiliation:

1. Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, School of Textile Science and Engineering, Tianjin Polytechnic University, China

2. Weihai Guangwei Composites Material Co., Ltd, China

Abstract

Multilayer interlock three-dimensional (3D) tubular braided composites have been widely used in propeller blades, high pressure pipelines, rocket nose cones and engine nozzles owing to prominent interlaminar shear properties, reliable damage tolerance and outstanding torsion performance. The prediction of the mechanical properties and the design of the fabric structures for the 3D braided composites are dependent on the trajectory distribution of strands and the geometrical model of the braided structure. This paper aims to build theoretical models for the braiding strand trajectories and presents a creative method to establish the parametric geometrical models for the multilayer interlock 3D tubular braided structures. Firstly, mathematical models of braiding strand trajectories are derived based on the analysis for the characteristics of carrier paths, the interlacing and interlocking of braided structures and the motion of braiding strands. The mathematical models are then developed to establish parametric expressions for multilayer interlock 3D tubular braided structures by the advanced development of UG NX®. In addition, the models of corresponding braiding strand trajectories and braiding structures can be obtained automatically in the simulation environment with the modification of design parameters. Finally, the established models are compared with the carbon fiber braided specimen. The results show that the innovative parametric geometric models of the multilayer interlock 3D tubular braided structures accurately describe the key characteristics of the preform.

Funder

Innovative Research Team Program of Higher Education of Tianjin, China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D winding path modeling method with fiber overlap effect;Composite Structures;2024-11

2. Topology-based parametric modeling of three-dimensional hexagonal braids for advanced composite structures;Textile Research Journal;2024-08-19

3. Horngear and carrier design for braiding tailorable composite preforms;CIRP Journal of Manufacturing Science and Technology;2024-06

4. Application of graph theory for preventing carriers’ collisions in variable path braiding machines;The International Journal of Advanced Manufacturing Technology;2023-04-21

5. Application of graph theory for detecting carriers’ collisions in braiding machines;The International Journal of Advanced Manufacturing Technology;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3