The properties of cotton-Tencel and cotton-Promodal blended yarns spun in different spinning systems

Author:

Kilic Musa1,Okur Ayşe2

Affiliation:

1. Department of Textile Engineering, Dokuz Eylül University, 35160 Buca, Izmir, Turkey,

2. Department of Textile Engineering, Dokuz Eylül University, 35160 Buca, Izmir, Turkey

Abstract

In this study, structural, physical and mechanical properties of cotton-Tencel and cotton-Promodal blended ring, compact and vortex spun yarns were compared. Yarn properties such as hairiness, unevenness, imperfections, diameter, density, roughness, roundness, breaking force and elongation were evaluated. In general, hairiness values of ring yarns are the highest and vortex yarns are the lowest. In regard to unevenness, compact yarns have the best and vortex yarns have the worst values. When the effect of spinning systems is evaluated in terms of breaking force and elongation, results show that compact yarns have the highest values whereas vortex yarns have the lowest. In addition, effects of different blend ratios on a yarn’s structural, physical and mechanical properties were examined by using 100% cotton, 100% regenerated cellulosic fibre and 67%—33%, 50%—50%, 33%—67% cotton-regenerated cellulosic fibre blended yarns. In general, an increasing ratio of regenerated cellulosic fibre content in the blend decreases unevenness, imperfections, diameter and roughness values; on the other hand it increases breaking force, elongation, density and shape values. Effect of blend type is also statistically significant for many yarn properties. Mainly, it can be seen that while cotton-Promodal yarns have better physical properties, cotton-Tencel yarns have better mechanical properties.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3