Axial-compression performance and finite element analysis of special-shaped tubular three-dimensional woven composites with different thicknesses and shapes

Author:

Lyu Lihua1ORCID,Liu Ao1,Wang Ying1,Liao Yongping1,Wang Jingjing1,Gao Yuan1,Zhou Xinghai1

Affiliation:

1. School of Textile and Material Engineering, Dalian Polytechnic University, China

Abstract

In this research, the self-reinforced structures tube preforms, which are the special-shaped tubular three-dimensional woven preforms, had been manufactured on semi-automatic looms. To prepare special-shaped tubular three-dimensional woven composites with different wall thicknesses and shapes, the vacuum-assisted resin transfer method was used by performing the prepared preform and resin as the reinforcement and matrix. Then, the axial compression performance was tested on a universal material testing machine. The results revealed that both the wall thicknesses and the shape had remarkable effects on the composites’ axial-compression properties. The performance of special-shaped tubular three-dimensional woven composites and normal tubular three-dimensional woven composites were compared and special-shaped tubular three-dimensional woven composites were better. Finally, finite element analysis was adopted in this research. The initial damage, stress evolution, and final failure of special-shaped tubular three-dimensional woven composites had been shown by the analysis. The stress concentration and failure mechanism of the composite materials after axial compression was revealed and the finite element model was correct and can predict the mechanical properties of special-shaped tubular three-dimensional woven composites.

Funder

National Science Foundation of Liaoning Province

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3