Serialized gradient chromatography for the digital blending of colored fibers and spinning of gradient colored yarn

Author:

Sun Xianqiang12ORCID,Xue Yuan12ORCID,Cui Peng12,Xu Zhiwu12,Zeng Dejun12

Affiliation:

1. Jiangnan University, China

2. Chaohu Yagor Color Spinning Technology Co., Ltd., China

Abstract

Gradient colored yarns are manufactured by controlling the blending ratios of three-primary-colored fibers in a slight distribution of gradients along the yarn length, thereby resulting in a continuous natural variation in mixed colors of the fibers throughout the whole yarn. The spinning of gradient colored yarns still remains a challenge, which requires the reliance on digital blending theory of colored fibers and the supporting of multi-channel computer numerical control (CNC) spinning technique. This paper constructed a three-primary-colored fiber gridded color mixing model and its mass mixing matrix and color mixing chromatography matrix by mass discretization and coupling pairing with a 10% gradient for the three-primary-colored fibers. With the aim of continuous natural gradient of mixed colors, the blending ratio gradient path of three-primary-colored fibers was planned based on the mass mixing matrix, and a method of regulating the gradient of color difference between adjacent color segments was proposed. In order to realize the natural gradient of color of the forming yarn, the spinning mechanism of gradient colored yarn was established based on three-channel CNC spinning mechanism and the time-series yarn simulation model, and the time-series spinning processing parameters of three-channel CNC spinning machine were devised. Four gradient colored yarns with different gradient paths were designed and prepared, the linear density, twist, unevenness, surface hairiness, and tensile strength of the spun yarns were measured, compared, and analyzed, and knitted fabrics with color gradient effect were fabricated by small circular knitting machine to obtain continuous and natural color transition with a dreamy and mysterious color effect.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3