Affiliation:
1. Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, College of Information Sciences and Technology, Donghua University, China
Abstract
The convolutional neural network (CNN) has recently achieved great breakthroughs in many computer vision tasks. However, its application in fabric texture defects classification has not been thoroughly researched. To this end, this paper carries out a research on its application based on the CNN model. Meanwhile, since the CNN cannot achieve good classification accuracy in small sample sizes, a new method combining compressive sensing and the convolutional neural network (CS-CNN) is proposed. Specifically, this paper uses the compressive sampling theorem to compress and augment the data in small sample sizes; then the CNN can be employed to classify the data features directly from compressive sampling; finally, we use the test data to verify the classification performance of the method. The explanatory experimental results demonstrate that, in comparison with the state-of-the-art methods for running time, our CS-CNN approach can effectively improve the classification accuracy in fabric defect samples, even with a small number of defect samples.
Funder
Fundamental Research Funds for the Central Universities
International Collaborative Project of the Shanghai Committee of Science and Technology
Shanghai Sailing Program
National Natural Science Foundation of China
Program for Changjiang Scholars from the Ministry of Education
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献