Review of carbon-based electromagnetic shielding materials: film, composite, foam, textile

Author:

Zhong Lulu1,Yu Rufang1,Hong Xinghua12ORCID

Affiliation:

1. College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, China

2. Zhejiang Sci-tech University Tongxiang Research Institute, China

Abstract

Carbon-based electromagnetic shielding materials are reviewed in terms of their performance, type, and preparation. They include film, composite, foam, and fabric with particular attention on their frequency selectivity ascribed to the periodic structure. The SE/t, referring to shielding effectiveness per unit thickness (dB/mm), and SSE, referring to shielding effectiveness per unit density (dB·cm3/g), are summarized. The main conclusions of this work are as follows: (1) large area film shows higher SE/t, in which carbon nanotube (CNT) film is endowed with the most attractive value (19,500 dB/mm); materials containing CNTs achieve higher shielding efficiency, ascribe to a high specific surface area, have a greater length–diameter ratio, and a one-dimensional continuous-oriented structure; (2) notably, frequency selectivity based on varied period structures has been widely studied; the method includes multilayer structure/printing/cutting/backfilling and, especially, woven fabric; (3) favorable shielding effectiveness is attributed to the shielding material's intrinsic electrical conductivity and structural integrity. Based on these developments, this paper aims to provide some valuable data, highlight the important research direction, and advance the development of carbon-based electromagnetic shielding materials.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3