An investigation of temperature-sensing textiles for temperature monitoring during sub-maximal cycling trials

Author:

Hughes-Riley Theodore1ORCID,Jobling Philippa2,Dias Tilak1,Faulkner Steve H2

Affiliation:

1. Advanced Textiles Research Group, School of Art & Design, Nottingham Trent University, UK

2. SPEED Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, UK

Abstract

Temperature-sensing textiles have been proposed for a variety of applications, including health monitoring and sports. Skin temperature ( Tsk) measurements are an important parameter in performance sports and can be used to better understand thermoregulation during exercise. Currently, most Tsk measurements are taken using skin-mounted thermistors, which can be uncomfortable to the wearer, or thermal imaging, which can be difficult to implement and analyze. This work investigates the feasibility of using textile temperature-sensing electronic yarns (E-yarns) to measure human skin temperature during sub-maximal cycling trials. E-yarns were attached to commercially available cycling suits and measurements were recorded using both the E-yarns and the skin-mounted thermistors at rest and during sub-maximal cycling. Temperature readings were compared between the two temperature-sensing methodologies to determine the viability of using the temperature-sensing E-yarns for this application. Differences in the Tsk measurements as high as 5.9℃ between the E-yarns and skin-mounted thermistors for participants at rest have been shown. This work has also identified that a build-up of sweat significantly altered the Tsk recorded by the E-yarns in some cases. Further experiments explored the effect of saline solutions (simulating sweat) on the response of the temperature-sensing E-yarns. This work has highlighted boundary conditions for taking point Tsk measurement using electronic textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3