Study on modification of rabbit hair fibers with L-cysteine

Author:

Yongfu Xu1ORCID,Zhang Yi1

Affiliation:

1. Tianjin Polytechnic University, School of textile, Tianjin, China

Abstract

Rabbit hair fibers were modified by L-cystine under the action of ultrasound and a kind of modified rabbit hair fiber was obtained. An orthogonal test of four factors and three levels was designed. The range analysis was analyzed using a comprehensive score method of friction factor and fiber strength, and the variance analysis was carried out by Statistical Package for Social Science statistical software. The optimal modification conditions were obtained: a concentration of L-cystine (A) of 0.05 mol/L, ultrasonic power (B) of 90 W, a water bath temperature (C) of 75℃, and ultrasonic treatment time (D) of 1 hour. Univariate analysis showed the L-cystine concentration had the most significant effect on the modification of rabbit hair fibers, and the regression equation is y = 74.423 + 1300.267 A−1.818 C−9092A2 + 0.019C2. The surface brightness of the modified rabbit hair fibers was enhanced and the scale angle was increased 20° by setting up the angle of the scale model and the electron microscope. The internal structure of rabbit hair fibers was characterized by Fourier transform infrared spectroscopy, peak separation, and differential scanning calorimetry. The results showed that L-cystine reduced the disulfide bond in the macromolecular chain by 3%, resulting in a change in the secondary structure of the rabbit hair, a decrease in the α-helix structure content, and an increase in β-folding structure content. Ellman’s reagent was used to determine that the content of the sulfhydryl group consumed in the modification was 0.211 mol/L. Testing the dye adsorption capacity and spinnability (adding 20%) of modified rabbit hair fibers showed an obvious improvement.

Funder

Special Fund for Agro-scientific Research

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3