Cushioning properties of weft-knitted spacer fabrics

Author:

Zhao Tong1,Long Hairu12,Yang Tianqi3,Liu Yanping12

Affiliation:

1. College of Textiles, Donghua University, China

2. Engineering Research Center of Technical Textile, Ministry of Education, China

3. School of Fashion Design, Shanghai Institute of Visual Art, China

Abstract

Three-dimensional spacer fabrics which have a sandwich structure are formed in a single knitting process without any additional joining treatment. They consist of two separate multifilament outer layers connected by arrays of spacer monofilaments. This paper presents an experimental study on the relationships between the cushioning properties and structural parameters of weft-knitted spacer fabrics in order to lay a foundation for the development of seamless shaped impact protectors for human body impact protection. Sixteen spacer fabrics of different structural parameters were knitted on a computerized flat knitting machine and tested on a universal mechanical testing machine. The cushioning properties of the spacer fabrics were analyzed in terms of their structural features, compression stress–strain curves, energy absorption, and compression resilience. It was found that multifilament fineness, spacer yarn diameter, and spacer yarn pattern should be matching in order to form effective binding structures between the outer layers and spacer monofilaments. The results also showed that spacer fabrics knitted with a shorter spacer yarn span distance, coarser monofilaments, and higher spacer yarn density have better compression resistance and absorption energy but inferior compression resilience if their binding structures are effective. This study has practical significance in promoting the application of this type of fabric as a cushion material for human body protection.

Funder

Fundamental Research Funds for the Central Universities

Initial research funds for Young Teachers of Donghua University

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3