Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method

Author:

Kang Tae Jin1,Kim Soo Chang,Sul In Hwan,Youn Jae Ryoun,Chung Kwansoo1

Affiliation:

1. Intelligent Textile System Research Center, School of Materials Science and Engineering, Seoul National University, Seoul, Korea 151-744

Abstract

A wavelet-fractal method to calculate the fractal dimension is proposed to objectively evaluate the surface roughness of fabric wrinkle, smoothness appearance and seam pucker. The proposed method was validated using the fractal surfaces produced from the mathematical functions and compared with the box and cube counting methods. The more accurate three-dimensional mesh grid data points of wrinkle replicas, smoothness appearance replicas and seam pucker samples were obtained using a three-dimensional, noncontact scanning system. As a supplementary reference the standard roughness parameters, which differentiate the degree of fabric surface roughness, were also investigated. The results show that the fractal dimension measured by the wavelet-fractal method as well as the surface average mean curvature show the power to clearly discern the grades of wrinkle, smoothness appearance as well as seam pucker, and thus can evaluate the fabric surface roughness objectively and quantitatively

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3