Optimized design of women’s graduated compression sports leggings

Author:

Guo Ning12,Lu Zhenxing3,Li Zhijiang12,Chen Nanliang12,Liu Kaixuan456,Dai Hong4,Zhang Peihua12ORCID

Affiliation:

1. Key Laboratory of Textile Science & Technology, Ministry of Education, China

2. College of Textiles, Donghua University, China

3. Jinpai Warp Knitting Technology Co., Ltd., China

4. Apparel and Art Design College, Xi’an Polytechnic University, China

5. University of Lille 1, Nord de France, France

6. GEMTEX Laboratory, ENSAIT, France

Abstract

In this study, we optimized design of a series of sports leggings O1/O2/O3 with graded pressures, evaluated a mannequin static, four-subjects static and dynamic dressing pressure, and compared with the commercial L-brand sports leggings L1/L2/L3. The results showed that the optimized design sports leggings had lower dressing pressure at the waist, abdomen, and hip than the commercial sports leggings, in which the dressing pressure of a mannequin static, four-subjects static and dynamic at the pressure-significant hip point P8 were reduced by 2.34–14.02%, 16.26–21.78%, and 5.26–11.88%, respectively. The four circumferential directions P4–7, P9–12, P13–16, and P17–20 from the groin to the ankle showed graded pressure trends, while the pressure of commercial sports leggings fluctuated with no significant pattern. In addition, the blood flow of O1/O2/O3 was higher than that of when naked and L1/L2/L3 in both static and dynamic dressing. The blood flow showed a decreasing trend with time, but O1/O2/O3 still had a relatively large blood flow, especially wearing O1 (76.671 PU, 64.054 PU) had a significant dynamic blood flow in both time stages, which had a positive effect on the promotion of blood circulation of the legs. L1/L2/L3 had lower blood flow in the inner calf P15 than when naked, a condition that may inhibit blood flow in the legs and lead to increased fatigue in the human legs, which is detrimental to physical exercise and human health.

Funder

the National Key R&D Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3