Impact of conventional and modified ring-spun yarn structures on the generation and release of fragmented fibers (microfibers) during abrasive wear and laundering

Author:

Jabbar Abdul12,Palacios-Marín Alma V1ORCID,Ghanbarzadeh Ali3,Yang Dongmin4,Tausif Muhammad1ORCID

Affiliation:

1. School of Design, University of Leeds, UK

2. Department of Textile Engineering, National Textile University, Pakistan

3. School of Mechanical Engineering, University of Leeds, UK

4. School of Engineering, University of Edinburgh, UK

Abstract

The abrasive wear of textiles during ordinary use and laundering results in fiber damage, which leads to the generation and release of fragmented fibers (FFs). Ring-spun yarn has a dominant share of about 70% of global spun yarn production. The effect of conventional and modified ring yarn structures (compact, SIRO and SIRO-compact) on FF release from cotton textiles during repeated abrasion and laundering was studied. All prepared cotton yarns and textiles are industrially and commercially relevant. The FFs formed during each abrasion and washing cycle were collected from textiles and quantified. The yarn tensile properties and fabric frictional characteristics were employed to explain the release of FFs. For the first time, the morphology of collected FF ends was associated with the fiber damage nature (granulated and fibrillated) induced by different types of stresses and experimental exposure conditions. The results demonstrated that modified ring yarn structures released a significantly lower FF mass as compared to conventional ring yarn structures. The tensile strength was decreased, and breaking elongation increased after repeated abrasion and washing. The fabric surface properties were also affected by abrasion and laundering. The yarn structure choices impact the amount of released FFs, which are dispersed into the environment as a pollutant or a carrier of pollutants with potential hazards to the health of the environment and living organisms.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3