Degradation study of polyester fiber in swimming pool water

Author:

Cionek Caroline Apoloni12ORCID,Nunes Catia2,Freitas Adonilson3,Homem Natalia14,Muniz Edvani254,Amorim Teresa1

Affiliation:

1. University of Minho, Portugal

2. Federal University of Technology – Paraná, Brazil

3. State University of Western Paraná, Brazil

4. State University of Maringá, Brazil

5. Federal University of Paraná, Brazil

Abstract

The disinfection of swimming pool water is vital to maintain water quality. The chemicals used in this practice can damage the fabrics of bathing suits and shorten the shelf life of the textile substrate. The degradation of polyester, a polymer that is widely used in bathing suits for swimming pools, was investigated. For this, a 23 factorial design was employed for the experimental methodology. The effect of several variables was analyzed in a simulated swimming pool batch, such as textile-exposure time, concentration of the used disinfection product, and batch temperature. The response variables were enthalpy of fusion ΔHm, melting temperature and crystallinity (obtained by differential scanning calorimetry), percentage of weight loss, temperature of maximum rate of weight loss, onset temperature and endset temperature (measured through thermogravimetric analysis), and Young's modulus values (measured in strain-stress tests in the row and column directions). The factors of temperature, time, and the concentration of disinfectant were significant for melting temperature, crystallinity, onset temperature, and Young's modulus for columns. The analyses of variance were obtained using software Design-Expert DX7. Attenuated total reflectance-Fourier transform infrared spectroscopy analysis showed changes in band intensities at 695 cm−1, which were attributed to ester groups, as well as a decrease of the carbonyl band at 1712 cm−1, which was attributed to the hydrolysis of the material. Analysis through scanning electronic microscopy images showed the appearance of stretch marks in the constituent filaments of the tested textiles, which suggests a surface degradation occurred.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3