Rotor spinning transfer channel design optimization via computational fluid dynamics

Author:

Lin Huiting1,Bergadà Josep M2,Zeng Yongchun13,Akankwasa Nicholus T1,Zhang Yuze13,Wang Jun13

Affiliation:

1. College of Textiles, Donghua University, Shanghai, China

2. Fluid Mechanics Department, UPC-ESEIAAT, Terrassa, Spain

3. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, China

Abstract

The conventional rotor spinning unit generates flow vortices in the transfer channel upstream region which affect the fiber configuration and consequently yarn properties. Geometry and spinning parameters such as transfer channel length, inlet width, rotor outlet pressure, opening roller speed, and diameter were found to be key parameters influencing airflow characteristics. To reduce the flow vortices in the upper stream region, modifications of the transfer channel were proposed, and their airflow fields were analyzed using computational fluid dynamics. Three designs were studied: a round transfer channel inlet, a bypass channel for extra air supply, and one with both the bypass and the round inlet. Analysis of airflow revealed that the design with both round transfer channel inlet and a bypass proved to be very effective in properly directing the flow and minimizing vortices. The design was also characterized by smoother velocity streamlines and maximum mass flow across the transfer channel. A conventional rotor spinning unit was modified in which a round transfer channel inlet corner and a bypass channel were utilized to conduct the experimental tests. Three sets of yarn samples were produced using the conventional and modified rotor spinning units under different rotor speed conditions. Yarn properties were tested. Properties such as tenacity, CVm%, and thin and thick places of the spun yarns produced by the new design improved compared to that of the conventional yarn.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3