A fiber Bragg grating-based smart wearable belt for monitoring knee joint postures

Author:

Abro Zamir Ahmed12,Hong Chengyu1ORCID,Chen Nanliang3,Zhang Yifan3ORCID,Lakho Rafique Ahmed3ORCID,Yasin Sohail4

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, China

2. Department of Textile Engineering, BUITEMS, Pakistan

3. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, China

4. School of Textiles and Design, Heriot-Watt University, UK

Abstract

Smart wearable technology is exceedingly desirable in athletic sports due to being lightweight, flexible to bend, soft and comfortable. It can continuously deliver accurate information and deformation. During knee flexion, the upper knee perimeter increases with the shrinkage of the knee joint flexor, and it can be monitored. In this study, a fiber Bragg grating (FBG) smart belt is fabricated by embedding FBG sensors at the center of a special silica gel (with unique adhering characteristics to fix FBG on the surface of the belt) for sensing knee joint movements. Polyvinyl chloride strips were adhered to the surface of the smart wearable belt for better protection. The smart belt was calibrated in the laboratory by a systematical changing knee posture and used to identify body postures at various static and kinematic postures of a male subject. The FBG-based smart wearable belt presented a consistent wavelength change after each step by angle changes at the knee joint position. The wavelength increment of FBG sensors increases linearly with the increasing of the bend angle of the knee joint in static tests, and the related slope ratio was 0.3 nm/°. In a jogging test, the measurement sensitivity achieved by the FBG smart wearable belt was within a range between 0.018/° and 0.021 nm/° for the male subject at the velocities of 2 and 3 km/h, respectively. The smart wearable belt could be a useful index to characterize a simple design and ease of implementation, and could also applied for knee posture circumferential strain measurements, especially for sports activities and monitoring stroke patients. This FBG smart belt can be fabricated to produce smart sensing fabrics.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3