Rapid quantitative analysis of natural indigo dye content using near-infrared spectroscopy

Author:

Sun Jieqing1,Yang Xiaoli1,Zhou Huixian1,Lv Zhijia2,Zhang Yuanyuan1,Han Guangting1ORCID,Ben Haoxi1,Jiang Wei1ORCID

Affiliation:

1. College of Textiles and Clothing, Qingdao University, China

2. Weiqiao Textile Co. Ltd., China

Abstract

Natural indigo, the most widely produced and utilized natural dye, encounters quality challenges due to the lack of standardization in the natural dye industry. Rapid determination of natural indigo dye contents before the dyeing process appears extremely important. In this study, two prediction models for different concentrations were established using partial least squares in conjunction with near-infrared analysis quantitatively to analyze the natural indigo dye content. A total of 228 indigo samples were collected from 14 different dyestuffs across various regions, with concentrations ranging from 100 to 1000 mg/L and 10 to 100 mg/L, respectively. The spectral pre-processing methods of multiplicative scatter correction plus first-order derivative and Savitzky–Golay smoothing plus band normalization plus first-order derivative were selected to enhance the model prediction accuracy. The optimized model exhibited excellent prediction accuracy. Within the concentration range of 100–1000 mg/L, the model has an R2 value of 0.9994, and a root mean square error of prediction value of 6.36 mg/L. In the concentration range of 10–100 mg/L, the model returned an R2 value of 0.9907, and a root mean square error of prediction value of 2.80 mg/L. The model's detection limit stands at 49.2 mg/L. The results demonstrated that the near-infrared models developed in this study can be used rapidly and accurately for the quantitative determination of natural indigo dyes.

Funder

Special Foundation of “Taishan Scholar” Construction Program

Key Research and Development Program of Shandong Province

State Key Laboratory of Bio-Fibers and Eco-Textiles

Central Guidance on Local Science and Technology Development Fund of Shandong Province

Key Research and Development Program of Ningxia Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3