Affiliation:
1. Institute of Design Engineering, School of Mechanical Engineering, Zhejiang University, China
2. Zhejiang University Robotics Institute, China
3. International Design Institute, Zhejiang University, China
Abstract
A shape-changing robotic mannequin is a mechatronic robot used to simulate different human body shapes. With such a robot, the dressing effects of a ready-made garment on different human bodies can be simulated and evaluated, which is very useful for garment design and garment online sales. Currently, the robotic mannequin surfaces are mostly designed into patches. However, the methodological lack of design result evaluation and shape deformation control hinders the performance of the robotic mannequins. In this paper, the robotic mannequin is computationally designed and optimized based on a large number of three-dimensional scanned human bodies, which endows the robot with a high simulation capability. The robot is designed into three layers comprising a skin layer composed of patches, a muscle layer consisting of shape-controllable elastic bars, and a skeleton layer made of linear actuators. The skeleton layer controls the overall shape change of the robot, and the muscle layer attached on the skeleton adjusts the bending of the skin layer, which makes the robot deformation predictable and controllable. A prototype of the robotic mannequin has been made on which the simulations of various human bodies have been experimented, and examples of predicting the dressing effects of ready-made garments on different human bodies via augmented virtual try-ons have been experimented as well.
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献