Mechanical Discrimination of Hairy Fabrics from Neurosensorial Criteria

Author:

Breugnot Cécile1,Bueno Marie-Ange2,Renner Marc1,Ribot-Ciscar Edith3,Aimonetti Jean-Marc3,Roll Jean-Pierre3

Affiliation:

1. Ecole Nationale Supérieure des Industries Textiles de Mulhouse, Laboratoire de Physique et Mécanique Textiles, FRE 2636 - CNRS, University of Mulhouse, 11 rue Alfred Werner, 68093 Mulhouse Cedex, France

2. Ecole Nationale Supérieure des Industries Textiles de Mulhouse, Laboratoire de Physique et Mécanique Textiles, FRE 2636 - CNRS, University of Mulhouse, 11 rue Alfred Werner, 68093 Mulhouse Cedex, France,

3. Laboratoire de Neurobiologie Humaine, UMR 6149 - CNRS, University of Provence, Centre Saint Jérome, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France

Abstract

Fabrics with more and more elaborate tactile properties are available on the textile market. However the specifications of the textile products do not feature their touch because this can not be measured precisely and objectively enough. Some measurement methods of the mechanical properties involved in tactile feeling have been developed. Nevertheless, a purely mechanical approach is not sufficient. Therefore, the human being was utilized as a touch sensor. The tactile afferent [i.e. conveyed to the central nervous system, centripetal] messages elicited by the mechanoreceptors of the skin in response to textile stimuli and which were propagated along the sensitive nervous fibers up to the brain were studied. These messages were recorded on conscious human individuals, by a method named microneurography. The aim of this study was to use the neurosensory results in order to improve the mechanical measurement methods for the characterization of the surface state of fabrics. The samples tested had undergone different emery finishing processes. The preliminary results of the microneurographic study highlight the importance of taking account of the effect along/against the main direction of the hairiness. In fact, the discrimination of different hairy fabrics by cutaneous mechanoreceptors is only achieved when the fabrics stroke the skin against the main direction of the hairiness. A friction device developed by the co-authors was modified in term of signal processing in order to measure the surface along and against the main direction of the hairiness separately. Moreover, the probe was improved in order to separate the mechanical behavior information on hairiness from the roughness information. The results obtained with this new method were compared with results obtained using the surface tester of the KES-F.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3