Crystallization behavior and mechanical properties of poly(lactic acid) complex fiber toughened by carbon nanotube nanocapsules

Author:

Liu Shu-qiang1,Wu Gai-hong1,Xiao Yun-chao1,Guo Hong-xia1,Shao Fen-juan1

Affiliation:

1. College of Textile Engineering, Taiyuan University of Technology, China

Abstract

Poly(lactic acid) (PLA) fiber, owing to its biocompatibility and biodegradability, could be widely used in many related industrial areas. However, high brittleness has been the main obstacle to expanding its applications. So in this paper, carbon nanotube (CNT) nanocapsules were designed to toughen PLA and further reported their effect on the crystallization behavior and mechanical properties of PLA complex fiber. These designed CNT nanocapsules successfully solved the agglomeration of CNTs within the PLA matrix as well as the compatibility issue. In addition, the morphological, mechanical, optical and thermal properties of PLA complex fibers were also studied. The addition of CNT nanocapsules obviously improved the crystallization behavior of PLA fiber. Furthermore, compared with pure PLA, the tensile strength of PLA complex fiber was enhanced by 30.62% and the elongation by 32.2%, so the designed CNT nanocapsules could be used as a toughener for PLA fiber. This research benefits the extension of PLA applications where toughness is an important factor.

Funder

Nature Science Foundation of Shanxi, China

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China

International visit program of Taiyuan University of Technology

Youth Foundation of Taiyuan University of Technology, China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3