Use of Artificial Neural Networks for Determining the Leveling Action Point at the Auto-leveling Draw Frame

Author:

Farooq Assad1,Cherif Chokri2

Affiliation:

1. Institute of Textile and Clothing Technology, Technische Universität Dresden. Dresden, Germany, -dresden.de

2. Institute of Textile and Clothing Technology, Technische Universität Dresden. Dresden, Germany

Abstract

Artificial neural networks with their ability of learning from data have been successfully applied in the textile industry. The leveling action point is one of the important auto-leveling parameters of the drawing frame and strongly influences the quality of the manufactured yarn. This paper reports a method of predicting the leveling action point using artificial neural networks. Various leveling action point affecting variables were selected as inputs for training the artificial neural networks with the aim to optimize the auto-leveling by limiting the leveling action point search range. The Levenberg—Marquardt algorithm is incorporated into the back-propagation to accelerate the training and Bayesian regularization is applied to improve the generalization of the networks. The results obtained are quite promising.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3