Dual-functional SFP/PAN based nano drug release system for treatment and nutrients

Author:

Han Ling12ORCID,Ma Yingbo1,Dou Hao1,Fan Wei12ORCID

Affiliation:

1. School of Textile Science and Engineering, Xi'an Polytechnic University, China

2. Ministry of Education Key Laboratory of Functional Textile Material and Product, Xi’an Polytechnic University, China

Abstract

Nano drug delivery systems can control the ordered release of drugs. To achieve the target of supplying therapeutics and nutrients at the same time, a novel nano drug delivery system with a core–shell structure was prepared by coaxial electrospinning. Polyacrylonitrile (PAN) has been used to produce a drug release scaffold in the shell section, mixed with absorbable silk fibroin peptide (SFP) as a nutrient. Ciprofloxacin (CPFX), a broad-spectrum antibiotic, was used as the core, as well as an antibacterial agent. Owing to its low molecular weight, using a pure SFP thin solution to manufacture nanofibers by electrospinning is still technically challenging. Thus, different ratios of PAN to SFP were used in the shell electrospinning solution. In this research, a novel nano dual-functionality drug delivery system has been successfully prepared. In vitro testing demonstrated that nanofibers could supply more nutrients with increasing SFP in shell solutions; however, the ability to maintain controlled release was reduced. It was found that the nanofiber membrane had the best controlled drug release capability for a PAN-to-SFP mass ratio of 95:5. Overall, most ciprofloxacin was released in the first 12 h, while the release of SFP was constant throughout the first 24 h. Our modeling demonstrated that the release of CPFX and SFP is best described using a first-order kinetic model. The developed drug delivery system is designed to release antimicrobial drugs in a controlled manner and provide absorbable nutrients simultaneously.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3