Relationships among the chemical, mechanical and geometrical properties of basalt fibers

Author:

Ralph Calvin1ORCID,Lemoine Patrick1,Summerscales John1ORCID,Archer Edward1,McIlhagger Alistair1

Affiliation:

1. University of Ulster at Jordanstown, UK

Abstract

We investigated the chemical, mechanical and geometrical properties of basalt fibers from three different commercial manufacturers and compared the results with those from an industry standard glass fiber. The chemical composition of the fibers was investigated by X-ray fluorescence spectrometry, which showed that basalt and glass fibers have a similar elemental composition, with the main difference being variations in the concentrations of primary elements. A significant correlation between the ceramic content of basalt and its tensile properties was demonstrated, with a primary dependence on the Al2O3 content. Single fiber tensile tests at various lengths and two-way ANOVA revealed that the tensile strength and modulus were highly dependent on fiber length, with a minor dependence on the manufacturer. The results showed that basalt has a higher tensile strength, but a comparable modulus, to E-Glass. Considerable improvements in the quality of manufacturing basalt fibers over a three-year period were demonstrated through geometrical analysis, showing a reduction in the standard deviation of the fiber diameter from 1.33 to 0.61, comparable with that of glass fibers at 0.67. Testing of single basalt fibers with diameters of 13 and 17 µm indicated that the tensile strength and modulus were independent of diameter after an improvement in the consistency of fiber diameter, in line with that of glass fibers.

Funder

Department for Employment and Learning, Northern Ireland

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3