Objective evaluation of fabric smoothness appearance with an ordinal classification framework based on label noise estimation

Author:

Wang Jingan1ORCID,Shuo Meng1ORCID,Wang Lei1ORCID,Sun Fengxin1,Pan Ruru1,Gao Weidong1,Shi Kangjun1

Affiliation:

1. Key Laboratory of Eco-textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, China

Abstract

Objective fabric smoothness appearance evaluation plays an important role in the textile and apparel industry. In most previous studies, objective fabric smoothness appearance evaluation is defined as a general pattern classification problem. However, the labels in this problem exhibit a natural ordering. Nominal classification ignores the ordinal information, which may cause overfitting in model training. In addition, for the existence of subjective errors, measurement errors, manual errors, etc., the labels in the data might be noisy, which has been rarely discussed previously. This paper proposes an ordinal classification framework based on label noise estimation (OCF-LNE) to objectively evaluate the fabric smoothness appearance degree, which takes the ordinal information and noise of the label in the training data into consideration. The OCF-LNE uses the basic classifier in pre-training as a label noise estimator, and uses the estimated label noise to adjust the labels in further training. The adjusted labels can introduce the ordinal constrain implicitly and reduce the negative impact of label noise in model training. Within a 10 × 10 nested cross-validation, the proposed OCF-LNE achieves 82.86%, 94.29%, and 100% average accuracies under errors of 0, 0.5, and 1 degree, respectively. Experiments on different fabric image features and basic classification models verify the effectiveness of the OCF-LNE. In addition, the proposed method outperforms the state-of-the-art methods for fabric smoothness evaluation and ordinal classification. Promisingly, the OCF-LNE can provide novel ideas for image-based fabric smoothness evaluation.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3