Transmission characteristics of cylindrical frequency selective fabrics with Jerusalem-shaped units

Author:

Guan Fuwang1ORCID,Li Zhaole1,Zhang Chuyang1,Yang Zhuli1,Qiu Yiping12

Affiliation:

1. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China

2. College of Textiles, Donghua University, Shanghai 201620, China

Abstract

Two kinds of complementary cylindrical frequency selective fabrics (CFSFs) with Jerusalem-shaped units were designed, constructed and analyzed in this paper. The models were built and simplified based on the thickness and equivalent electromagnetic parameters of the base fabrics. Considering the unit number difference of the models and bending directionality, the simulation processes were separately carried out using the waveguide method in HFSS software. Based on the preparation of preliminary planar prototypes and corresponding bending molds, different CFSF samples with the same planar units and varying bending curvature were fabricated, and the transmission characteristics were measured using the transmission method to study the influences of bending effects. The measured transmission characteristics with and without the curved mold were similar, proving the use of the curved mold exerted a negligible effect on the actual measured results of samples. For the two kinds of complementary structures, the measured and simulated S21 (transmission coefficient) curves had indistinguishable differences, which justified the validity of the modeling and simulation process. Although the bending direction and curvature affected the S21 curves of aperture and patch CFSFs at varying degrees, the transmission characteristics did not show drastic fluctuation and shifting, which could be attributed to the ideal symmetry of Jerusalem-shaped units and good array characteristics.

Funder

Quanzhou Home-bay Recruitment Program of Global Talents

Science and Technology Bureau of Quanzhou

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3