Determination of the permeability coefficient and airflow resistivity of nonwoven materials

Author:

Yang Tao1ORCID,Hu Lizhu2,Petrů Michal1,Wang Xiaomeng1,Xiong Xiaoman3,Yu Deyou4,Mishra Rajesh5ORCID,Militký Jiří3

Affiliation:

1. Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Czech Republic

2. Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China

3. Department of Material Engineering, Technical University of Liberec, Faculty of Textile Engineering, Technical University of Liberec, Czech Republic

4. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Ministry of Education, Zhejiang Sci-Tech University, China

5. Department of Material Science and Manufacturing Technology, Czech University of Life Sciences Prague, Faculty of Engineering, Czech University of Life Sciences Prague, Czech Republic

Abstract

Air penetration behavior plays a vital role in the performance of fibrous material in various industrial applications. Two parameters, the permeability coefficient and airflow resistivity, can describe the air penetration behavior of fibrous material. FX 3300 Textech Tester III and AFD300 AcoustiFlow devices were used to respectively characterize the permeability coefficient and airflow resistivity of nonwoven materials. Nonwoven samples were compressed due to the load from the test head of the FX 3300. Finite element analysis along with the mathematical method were implemented to recover the airflow permeability of samples at the uncompressed state. The effects of pressure drop on the airflow velocity and permeability coefficient were analyzed by the Ergun-type model. The determination of airflow resistivity based on the permeability coefficient is carried out via two approaches, that is, the direct method and the extrapolation method. The results show that the airflow velocity is not linearly related to the pressure drop, which differs from Darcy's law. This non-linear relation is mainly attributed to the influence of frictional loss. By comparing the relative error between assessed and measured airflow resistivity, most of the assessed values of the compressed samples are overestimated. The results also suggest that the direct and extrapolation methods are applicable to assess airflow resistivity on an airflow velocity (or air permeability) test device. Moreover, the Ergun-type model is also applicable to determine the permeability coefficient and airflow resistivity of nonwoven materials.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3