Effect of the basic surface properties of woven lining fabric on printing precision and electrical performance of screen-printed conductive lines

Author:

Hong Hong1ORCID,Hu Jiyong12ORCID,Yan Xiong1

Affiliation:

1. Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University, China

2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, China

Abstract

Conductive lines are essential for the integration of electronic devices into fabrics, and their direct screen printing on fabrics is a promising, simple and low-cost method for mass-manufactured textile-based conductive lines. However, the intrinsic porous structures and texture characteristic of textiles complicate the diffusion and penetration of conductive ink, and will deteriorate the printing precision and electrical performance of conductive lines. To establish the relationship between the surface characteristics (i.e. porosity, roughness, contact angle) and printing precision as well as electrical performance, the screen-printed conductive lines on six different nylon woven lining fabrics were examined and compared. Moreover, to study the printing precision and the minimum printable line width on woven lining fabric, conductive lines with different widths were screen printed. The results showed that the fabric substrate with the smallest pore size and roughness shows a higher printing precision and lower electrical resistance of screen-printed conductive lines. Relatively, the dynamic contact angle and wetting time of ink on the surface of the fabric have a significant effect on the printing precision. Therefore, the surface structure of the fabric substrate determines to some degree the printing precision of conductive lines, the printable minimum line width and its electrical properties. It is believed that these findings will provide some important support for screen printing flexible electronic devices on woven textiles.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3