Color segmentation and extraction of yarn-dyed fabric based on a hyperspectral imaging system

Author:

Jianxin Zhang1,Kangping Zhang1ORCID,Junkai Wu1ORCID,Xudong Hu1

Affiliation:

1. Faculty of Mechanical and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province China

Abstract

For multi-color yarn-dyed fabrics which are cross-woven by yarns with different colors, the different colors cannot be directly measured by a traditional spectrophotometer because it can only obtain the average color of solid-color sample in the limited aperture. In this paper, a novel method for color segmentation and extraction for multi-color yarn-woven fabrics based on a Hyperspectral Imaging System (HIS) was proposed. First, the multi-color yarn-woven fabric images were acquired with the HIS. Then a space transformation based on Fréchet distance was used to transform the pre-processed hyperspectral fabric images into gray images, and then an improved watershed algorithm was used to segment the transformed gray images into different color regions. Finally, to solve the problems of over-segmentation with the improved watershed algorithm, an improved k-means clustering algorithm was adopted to merge the over-segmented color regions. The experimental results on four multi-color yarn-woven fabrics showed that the color segmentation accuracy of the proposed method outperformed the ordinary k-means, Fuzzy C-means (FCM), and Density peak cluster (DPC) algorithms on evaluation indexes of compactness (CP) and separation (SP), and the execution efficiency was improved by at least 55%. Furthermore, the color difference between the proposed method and the spectrophotometric measurements ranged from 0.60 to 0.88 CMC (2:1) (Color Measurement Committee) units, which almost satisfied the accuracy of color measurement.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3