Covalent immobilization of enzyme on aminated woven poly (lactic acid) via ammonia plasma: evaluation of the optimum immobilization conditions

Author:

Song Ji Eun1,Song Wha Soon1,Yeo Sang Young2,Kim Hye Rim1,Lee So Hee3

Affiliation:

1. Department of Clothing and Textiles, Sookmyung Women’s University, Korea

2. Technical Textile & Materials R&BD Group, Korea Institute of Industrial Technology, Korea

3. Research Institute of Women’s Health, Sookmyung Women’s University, Korea

Abstract

The present study aims to develop an immobilization support from woven poly (lactic acid) (PLA) and establish the optimum immobilization conditions for trypsin. Woven PLA was modified by ammonia-based plasma treatment in order to incorporate amine groups on its surface. X-ray photoelectron spectroscopy analysis showed that the N1s composition of PLA increased significantly, from 0.66% to 5.92%, after ammonia-based plasma processing. Trypsin from porcine pancreas was immobilized onto modified woven PLA by covalent binding after activating PLA with glutaraldehyde (GA). The results indicated that the optimal GA treatment conditions were as follows: pH of 10.0, 2% GA (v/v), and 180 min crosslinking time. In addition, the optimum immobilization conditions were as follows: pH of 8.5, 10% (owf) of trypsin concentration, 30 min, and 25℃. Under the optimum conditions, the amount of immobilized enzyme on woven PLA was 0.28 mg/mg and specific activity was 3.763 U/mg. In addition, the pH and thermal stabilities of the immobilized trypsin were improved. The immobilized trypsin retained approximately 55% of its initial activity after 20 days of storage and exhibited the potential for repetitive use through approximately 15 cycles. GA crosslinking and trypsin immobilization were found to improve the roughness of the PLA surface and increase its hydrophobicity. The data indicate that modified woven PLA, used as an immobilization support, shows suitable properties for use as a biocatalytic material in enzymatic applications.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3