A comparison of robust Bayesian and LVQ neural network for visual uniformity recognition of nonwovens

Author:

Jianli Liu 1,Baoqi Zuo 2,Xianyi Zeng 3,Vroman Philippe3,Rabenasolo Besoa3,Guangming Zhang 4

Affiliation:

1. College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China, School of Textiles and Clothing, Jiangnan University, Wuxi, 211422, China

2. College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China, bqzuo,suda.edu.cn

3. Univ Lille Nord de France, F-59000 Lille, France, ENSAIT, GEMTEX, F-59056 Roubaix, France

4. College of Coputer Science and Technology, Soochow University, Suzhou, 215021, China

Abstract

The visual uniformity recognition of nonwoven materials using image analysis and neural network is a typical application of pattern recognition in textile industry. In this paper, we try to find a solution to this problem by combining the generalized Gaussian density (GGD) model in wavelet domain and two types of neural networks, robust Bayesian and learning vector quantization (LVQ) neural network. The proposed model is constituted with two stages, i.e., texture representation and pattern recognition. For texture representation, each image is decomposed into four levels using the 9-7 bi-orthogonal wavelet base. The wavelet coefficients in each subband are independently modelled by the GGD model. Moreover, taken as textural features, the corresponding scale and shape parameters estimated from the wavelet coefficients distribution with the maximum likelihood (ML) estimation are extracted in order to train and test the neural network for visual uniformity classification. During the pattern recognition part, robust Bayesian neural network and LVQ neural network are used as classifier. Especially, the experiments based on robust Bayesian neural network are taken as the key point. Experimental results indicate that the robust Bayesian neural network perform superiorly.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3