A woven electrode with convex structure for electrical impedance tomography

Author:

Zhang Xi1ORCID,Zhong Yueqi12,Wang Qi3,Dou Chang3

Affiliation:

1. College of Textiles, Donghua University, Shanghai, China

2. Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University

3. Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Polytechnic University, Tianjin, China

Abstract

We developed a silver/silver chloride (Ag/AgCl) woven electrode, which was woven in a convex high-density structure. The convex structure can decrease the motion artifacts caused by the slippage between human skin and the electrode. The high density can reduce the noise caused by the change of contact resistance. The model of the electrode–skin interface was proposed, and its equivalent circuit model was built, which can present an intuitive understanding of electrode design principles. Furthermore, AgCl particles were electrochemically deposited on the Ag electrode in terms of 23 schemes to optimize the deposition uniformity. The effects of deposition time, electrolyte concentration, and current/voltage magnitude were investigated. According to the result, the best combination is a constant current method, with the current at 0.01 A, the deposition time set to 300 s, and the electrolyte concentration as 0.05 M. The resistances of the deposited electrodes are qualified for impedance monitoring due to their small resistance. A bioimpedance system was assembled followed by the electrical impedance tomography mechanism. The frequency response and bioimpedance–time relationship were measured and analyzed in our bioimpedance system. The result reveals that the frequency response from [Formula: see text] to[Formula: see text] Hz presents a stable state for the convex woven electrode. The woven electrode system has a wider stable frequency band than the wet electrode. The bioimpedance of wet electrodes is stable in the initial time, whereas that of woven electrodes decreases with time. However, the wet electrode bioimpedance increases with time after 3 h, and the woven electrode bioimpedance is stable after 3 h. Both the interface capacitance and resistance have very important roles in the bioimpedance system. The woven electrode is better in long-term monitoring than the wet electrode. In addition, convex electrode bioimpedance presents less noise than the plain electrode. Therefore, the convex electrode is the best choice for the bioimpedance monitoring system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3