Comparative analysis on friction fields derived from different bottom pins in the drafting system of ring spinning and their effects on yarn properties

Author:

Sun Yue12,Dai Jiajia1,Liu Junjie1,Jiang Liquan1ORCID,Yang Shengming3,Jiang Wei3,Liu Keshuai2ORCID,Yu Hao1ORCID

Affiliation:

1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, China

2. School of Textile Science and Engineering, Wuhan Textile University, China

3. Anhui Huamao Group Co., Ltd., China

Abstract

In the drafting process, the strength and distribution of the friction field determines the fiber movement state, affecting the yarn formation process and yarn properties directly. The bottom pin, as an important part in the drafting zone, forms an elastic friction field with the top pin through the apron, which has an important influence on yarn properties. This work is aiming to compare the different friction fields generated by two bottom pins and its mechanical effect on fibers, revealing the influence of the friction field on the quality of yarns with different counts. Theoretical and experimental results show that a larger and stronger friction field was formed by the smaller surface curvature and flatter transition level of bottom pins, imposing a positive effect on the yarn evenness and strength. The difference in evenness between yarns spun with the two types of pins vary from 4.3% to 9.8%, while the yarn spun with a flatter bottom pin has higher strength (maximum difference to 17.1%). This study on the influence of the friction field on yarn properties can clarify the adaptability of different bottom pins for the production of different yarn counts, showing great significance on the actual control of yarn properties and property improvement.

Funder

National Natural Science Foundation of China

The cultivation project of Wuhan Textile University for National Natural Science Foundation

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3