Suitability of knitted fabrics as elongation sensors subject to structure, stitch dimension and elongation direction

Author:

Ehrmann A1,Heimlich F1,Brücken A1,Weber MO1,Haug R1

Affiliation:

1. Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Germany

Abstract

The area of smart textiles has recently attracted more and more attention. One of the challenges in this domain is the development of textile sensors, such as textile electrodes, pressure sensors, elongation sensors, etc., mostly containing conductive yarn and/or conductive coating. One possibility to build a textile elongation sensor which can, for example, be utilized as a breathing sensor in a smart shirt, is using knitted fabrics created from conductive yarns, which often show a strong dependence of the electric resistance on the elongation. Due to the typical wearing out of knitted fabrics, however, the time-dependent behavior of a stretched fabric must also be taken into account. The article thus shows the results of elongation-dependent and time-dependent resistance measurements on knitted fabrics, produced from different yarns in various structures and stitch dimensions, elongated in different orientations with respect to the course direction. The results of our study show that full cardigan with medium stitch size is better suited for use as an elongation sensor than double face fabrics or other stitch sizes. These findings are not influenced by the stainless steel fraction in the conduction yarn, while mixing this yarn with a non-conductive one causes undesired signal deviations.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3