Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers

Author:

Song Ji Eun1,Cavaco-Paulo Artur2,Silva Carla2,Kim Hye Rim1ORCID

Affiliation:

1. Department of Clothing and Textiles, Sookmyung Women's University, Korea

2. Centre of Biological Engineering, University of Minho, Portugal

Abstract

The present study aimed to improve the properties of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. The lauryl gallate oligomerization process was conducted by laccase-mediated oligomerization. Lauryl gallate was chemically confirmed by matrix-assisted laser desorption/ionization with time-of-flight analyses. The oligomerization conditions were controlled considering the surface properties (water contact angle, surface energy, and water absorption time) of bacterial cellulose nonwoven fabrics. The controlled oligomerization conditions were 160 U/mL of laccase and 20 mM lauryl gallate. After bacterial cellulose was treated by the physical entrapment of lauryl gallate oligomers, X-ray photoelectron spectroscopy analysis showed that the N1 atomic composition (%) of bacterial cellulose increased from 0.78% to 4.32%. This indicates that the lauryl gallate oligomer molecules were introduced into the bacterial cellulose nanofiber structure. In addition, the water contact angle was measured after washing the bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers for 180 minutes, and it was found to maintain a water contact angle of 88°. The durability of bacterial cellulose nonwoven fabric treated by the physical entrapment of lauryl gallate oligomers was confirmed by measuring the tensile strength after wetting and dimensional stability. As a result, the tensile strength after wetting was about five times higher and the dimensional stability was three times higher than that of untreated bacterial cellulose nonwoven fabric.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3