Synthesis and characterization of a dyeable bio-based polyurethane/branched poly(ethylene imine) interpenetrating polymer network with enhanced wet fastness

Author:

Chung Jae Woo12,Park Ji Hwan1,Choi Hyung-Min12,Oh Kyung Wha3

Affiliation:

1. Department of Organic Materials and Fiber Engineering, Soongsil University, South Korea

2. Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, South Korea

3. Department of Fashion Design, Chung-Ang University, South Korea

Abstract

Bio-based polyurethane is synthesized from biodegradable polycaprolactone, methylene diphenyl diisocyanate and 1,4-butanediol. The bio-based polyurethane is blended with branched polyethyleneimine by a solution casting method and further treated with glutaraldehyde. From nuclear magnetic resonance, Fourier-transform infrared spectroscopy, leaching tests and contact angle measurements, it was found that a semi-interpenetrating polymer network structure is induced by the glutaraldehyde treatment of the bio-based polyurethane/branched polyethyleneimine blend film, which resulting from the crosslinking of branched polyethyleneimine by imine bonds formed from the amine-aldehyde reaction between branched polyethyleneimine and glutaraldehyde. In addition, the glass transition temperature, Young’s modulus and the shape retention results show that the mechanical strength of bio-based polyurethane, which is weakened by the plasticizing effect of branched polyethyleneimine, is restored by the formation of the semi-interpenetrating network structure. We found that the bio-based polyurethane/branched polyethyleneimine with a semi-interpenetrating network shows a much higher affinity for Acid Red 4 than bio-based polyurethane, and the wet fastness of dye is significantly improved by the formation of the semi-interpenetrating network.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3