Optimization of energy usage in the hydroentanglement process

Author:

Moyo Doice1,Patnaik Asis12,Anandjiwala Rajesh D12

Affiliation:

1. Nonwovens and Composites Group, Polymers and Composites Competence Area, CSIR Material Science and Manufacturing, South Africa

2. Department of Textile Science, Faculty of Science, Nelson Mandela Metropolitan University, South Africa

Abstract

The hydroentanglement process is highly energy intensive compared to other methods of manufacturing nonwoven fabrics. This paper presents an exploratory study on optimizing the usage of hydroentanglement energy so as to lower the processing cost. The experiments were based on a Box–Behnken experimental design (BBD) and multivariate linear regression analysis to model the tensile strength as response to variables. Three variables were selected, namely fabric area weight (150–400 g/m2), machine speed (5–15 m/min) and waterjet pressure (40–200 bars). These parameters were employed in two sets of experiments to achieve maximum tensile strength of viscose nonwoven fabrics. The first experiment was conducted using higher waterjet pressures of 100, 150 and 200 bars, which were proved to have exceeded the optimum levels. The second experiment was conducted at relatively lower waterjet pressures of 40, 60 and 80 bars. The results on tensile strength were analyzed using the SYSTAT 10 software package and response surface plots were prepared. The linear, quadratic and interactive effects of the main variables were shown to be significant. Interactions amongst the variables were found to have either a synergistic (positive) or offsetting (negative) relationship with the fabric tensile strength. The interactions involving machine speed were predominantly offsetting. The 400 g/m2 area weight fabric produced at 80 bars of waterjet pressure achieved a fabric tensile strength of 222 cN, which compared favorably with that of 232 cN obtained at 200 bars of waterjet pressure. In this exploratory study using BBD, linear, quadratic and interactive effects were observed to be significant and the usage of hydroentanglement energy was successfully optimized. This indicates the possibility of achieving high fabric strength but at lower waterjet pressures; in other words, by employing low hydroentanglement energy and thereby minimizing the processing cost.

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3