Affiliation:
1. School of Mechanical and Instrumental Engineering, Xi’an University of Technology, China
2. School of Electronics and Information, Xi’an Polytechnic University, China
3. Shaanxi Artificial Intelligence Joint Laboratory, Xi’an Polytechnic University, China
Abstract
Digital printing has been widely used in textile printing production. In the process of designing digital printing patterns, an image generative model is needed to assist in obtaining more diversified patterns. However, the current model involves large storage space and high computing cost, which affects the promotion of digital printing customized production. To solve the problem, this article proposes a digital printing image generation method based on style transfer. Firstly, a style transfer method based on exact feature distribution matching is constructed to realize the accurate matching from image content to style features. And a balanced loss function is used to enhance the universality of the proposed method. Furthermore, knowledge distillation is introduced to compress the method proposed to reduce the hardware requirements when processing high-resolution digital printing images. Finally, a segmented training strategy is proposed to solve the performance degradation caused by model compression. The experimental results show that when processing images with a resolution of 3000 × 3000, the storage capacity of the model is only 2.68 MB and only 0.20 TFLOPs is required. The maximum processing resolution is more than 8K. The pattern obtained by this model is of high quality and can meet the needs of digital printing production.
Funder
Xi'an Science and Technology Plan Project
the Scientific Research Program Funded by Shaanxi Provincial Education Department
The Key Research and Development Program of Shaanxi
National Natural Science Foundation of China
Shaanxi Provincial College of Science and Technology Youth Talent Support Project
the Innovation Capability Support Program of Shaanxi
Subject
Polymers and Plastics,Chemical Engineering (miscellaneous)