Digital printing image generation method based on style transfer

Author:

Su Zebin123ORCID,Zhao Siyuan23,Zhang Huanhuan23ORCID,Li PengFei2,Lu Yanjun1

Affiliation:

1. School of Mechanical and Instrumental Engineering, Xi’an University of Technology, China

2. School of Electronics and Information, Xi’an Polytechnic University, China

3. Shaanxi Artificial Intelligence Joint Laboratory, Xi’an Polytechnic University, China

Abstract

Digital printing has been widely used in textile printing production. In the process of designing digital printing patterns, an image generative model is needed to assist in obtaining more diversified patterns. However, the current model involves large storage space and high computing cost, which affects the promotion of digital printing customized production. To solve the problem, this article proposes a digital printing image generation method based on style transfer. Firstly, a style transfer method based on exact feature distribution matching is constructed to realize the accurate matching from image content to style features. And a balanced loss function is used to enhance the universality of the proposed method. Furthermore, knowledge distillation is introduced to compress the method proposed to reduce the hardware requirements when processing high-resolution digital printing images. Finally, a segmented training strategy is proposed to solve the performance degradation caused by model compression. The experimental results show that when processing images with a resolution of 3000 × 3000, the storage capacity of the model is only 2.68 MB and only 0.20 TFLOPs is required. The maximum processing resolution is more than 8K. The pattern obtained by this model is of high quality and can meet the needs of digital printing production.

Funder

Xi'an Science and Technology Plan Project

the Scientific Research Program Funded by Shaanxi Provincial Education Department

The Key Research and Development Program of Shaanxi

National Natural Science Foundation of China

Shaanxi Provincial College of Science and Technology Youth Talent Support Project

the Innovation Capability Support Program of Shaanxi

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3